#253 DePaul (4-6)

avg: 588.06  •  sd: 54.69  •  top 16/20: 0%

Click on a column to sort  • 
# Opponent Result Game Rating Status Date Event
329 Knox Win 12-9 583.42 Mar 1st Midwest Throwdown 2025
86 Marquette** Loss 4-13 712.53 Ignored Mar 1st Midwest Throwdown 2025
161 Wisconsin-Eau Claire Loss 5-10 410.27 Mar 1st Midwest Throwdown 2025
72 Southern Illinois-Edwardsville** Loss 4-13 796.61 Ignored Mar 2nd Midwest Throwdown 2025
221 Wisconsin-B Win 9-7 990.04 Mar 2nd Midwest Throwdown 2025
161 Wisconsin-Eau Claire Loss 1-13 384.17 Mar 2nd Midwest Throwdown 2025
117 Colorado Mines** Loss 4-13 589.25 Ignored Mar 29th Old Capitol Open 2025
369 Iowa-B** Win 14-4 528.26 Ignored Mar 29th Old Capitol Open 2025
285 Luther Win 13-12 557.43 Mar 29th Old Capitol Open 2025
216 Minnesota-Duluth Loss 10-11 616.78 Mar 30th Old Capitol Open 2025
**Blowout Eligible

FAQ

The uncertainty of the mean is equal to the standard deviation of the set of game ratings, divided by the square root of the number of games. We treated a team’s ranking as a normally distributed random variable, with the USAU ranking as the mean and the uncertainty of the ranking as the standard deviation
  1. Calculate uncertainy for USAU ranking averge
  2. Model ranking as a normal distribution around USAU averge with standard deviation equal to uncertainty
  3. Simulate seasons by drawing a rank for each team from their distribution. Note the teams in the top 16 (club) or top 20 (college)
  4. Sum the fractions for each region for how often each of it's teams appeared in the top 16 (club) or top 20 (college)
  5. Subtract one from each fraction for "autobids"
  6. Award remainings bids to the regions with the highest remaining fraction, subtracting one from the fraction each time a bid is awarded
There is an article on Ulitworld written by Scott Dunham and I that gives a little more context (though it probably was the thing that linked you here)