College Men's USAU Rankings (OV)

2023-24 Season

Data updated through August 25 at 9:00pm EDT

FAQ
Division I // Division III
Rank    Change Team                                                 Record Rating Change Region Conference Div   SoS PDC %
6 1 Pittsburgh OV 1 24-6 2332.82 240 Ohio Valley West Penn DI D-I 2118.55 214.27 0.1
16 Penn State OV 2 28-12 2148.22 227 Ohio Valley West Penn DI D-I 1980.47 167.76 0.08
35 1 Ohio State 20-13 1903.25 261 Ohio Valley Ohio DI D-I 1857.69 45.56 0.02
56 4 Temple 22-10 1743.67 309 Ohio Valley East Penn DI D-I 1570.21 173.46 0.11
68 17 Franciscan 23-2 1660.48 164 Ohio Valley Ohio DIII D-III 1283.44 377.05 0.29
74 Cincinnati 10-14 1614 253 Ohio Valley Ohio DI D-I 1648.21 -34.2 -0.02
77 8 Carnegie Mellon 18-12 1607.47 289 Ohio Valley West Penn DI D-I 1566.84 40.63 0.03
79 9 Case Western Reserve 20-12 1595.69 229 Ohio Valley Ohio DI D-I 1494.44 101.26 0.07
86 9 Cedarville 15-7 1555.52 200 Ohio Valley Ohio DIII D-III 1368.49 187.03 0.14
92 31 Pennsylvania 19-16 1539.36 392 Ohio Valley East Penn DI D-I 1453.99 85.38 0.06
97 29 Lehigh 15-21 1526.34 381 Ohio Valley East Penn DI D-I 1582.15 -55.81 -0.04
123 1 Oberlin 11-11 1396.72 244 Ohio Valley Ohio DIII D-III 1353.42 43.31 0.03
127 17 Pittsburgh-B 12-9 1388.73 327 Ohio Valley Ohio Valley Dev Dev 1467.6 -78.87 -0.05
130 59 Penn State-B 16-4 1379.42 13 Ohio Valley Ohio Valley Dev Dev 1243.3 136.12 0.11
150 2 West Chester 14-9 1314.53 288 Ohio Valley East Penn DI D-I 1228.25 86.28 0.07
157 8 Miami (Ohio) 14-5 1289.76 254 Ohio Valley Ohio DI D-I 1247.65 42.12 0.03
168 49 Kenyon 6-11 1252.36 493 Ohio Valley Ohio DIII D-III 1396.67 -144.31 -0.1
170 4 Villanova 21-9 1251.96 293 Ohio Valley East Penn DI D-I 1158.22 93.75 0.08
173 10 Xavier 19-12 1233.43 260 Ohio Valley Ohio DIII D-III 1200.47 32.96 0.03
182 78 Dayton 14-6 1190.4 24 Ohio Valley Ohio DI D-I 994.98 195.43 0.2
194 10 Ohio 13-14 1142.62 333 Ohio Valley Ohio DI D-I 1143.69 -1.05 0
198 1 Messiah 12-19 1128.99 297 Ohio Valley West Penn DIII D-III 1210.01 -81.01 -0.07
212 9 West Virginia 14-18 1079.5 260 Ohio Valley West Penn DI D-I 1137.15 -57.64 -0.05
234 37 Haverford 14-12 999.52 163 Ohio Valley East Penn DIII D-III 1093.42 -93.89 -0.09
244 8 Dickinson 10-7 979.09 369 Ohio Valley West Penn DIII D-III 931.21 47.89 0.05
268 40 Akron 5-6 871.21 152 Ohio Valley Ohio DI D-I 825.89 45.33 0.05
271 39 Cincinnati -B 3-3 857.68 151 Ohio Valley Ohio Valley Dev Dev 907.53 -49.84 -0.05
282 12 Toledo 9-12 818.55 431 Ohio Valley Ohio DI D-I 783.47 35.07 0.04
289 9 Drexel 2-16 769.67 296 Ohio Valley East Penn DI D-I 1241.64 -471.97 -0.38
292 12 Kent State 6-16 747.63 416 Ohio Valley Ohio DI D-I 1012.62 -264.99 -0.26
318 12 Swarthmore 5-16 655.47 331 Ohio Valley East Penn DIII D-III 886.42 -230.94 -0.26
319 38 Edinboro 10-16 654.16 203 Ohio Valley West Penn DI D-I 829.82 -175.66 -0.21
347 44 Wright State 4-14 527.36 189 Ohio Valley Ohio DI D-I 720.67 -193.3 -0.27
382 38 Lehigh-B 3-11 287.63 201 Ohio Valley East Penn DIII D-III 546.91 -259.28 -0.47
387 26 Ohio-B 0-7 242.5 289 Ohio Valley Ohio DI D-I 800.62 -558.11 -0.7
402 39 Case Western Reserve-B 3-8 38.41 93 Ohio Valley Ohio Valley Dev Dev 22.23 16.18 0.73
407 33 West Chester-B 1-13 -132.44 200 Ohio Valley ? 244.97 -377.4 -1.54
408 35 Dayton-B 1-5 -164.72 166 Ohio Valley Ohio Valley Dev Dev 66.59 -231.3 -3.47
409 34 Denison 1-5 -189.45 161 Ohio Valley Ohio DIII D-III 57.26 -246.71 -4.31

FAQ

The results on this page ("USAU") are the results of an implementation of the USA Ultimate Top 20 algorithm, which is used to allocate post season bids to both colleg and club ultimate teams. The data was obtained by scraping USAU's score reporting website. Learn more about the algorithm here. TL;DR, here is the rating function. Every game a team plays gets a rating equal to the opponents rating +/- the score value. With all these data points, we iterate team ratings until convergence. There is also a rule for discounting blowout games (see next FAQ)
For reference, here is handy table with frequent game scrores and the resulting game value:
"...if a team is rated more than 600 points higher than its opponent, and wins with a score that is more than twice the losing score plus one, the game is ignored for ratings purposes. However, this is only done if the winning team has at least N other results that are not being ignored, where N=5."

Translation: if a team plays a game where even earning the max point win would hurt them, they can have the game ignored provided they win by enough and have suffficient unignored results.