#261 Florida Tech (6-3)

avg: 830.03  •  sd: 93.76  •  top 16/20: 0%

Click on a column to sort  • 
# Opponent Result Game Rating Status Date Event
335 Florida-B Win 11-5 1158.56 Mar 15th Tally Classic XIX
280 Jacksonville State Win 11-6 1312.79 Mar 15th Tally Classic XIX
398 South Florida-B** Win 11-0 694.17 Ignored Mar 15th Tally Classic XIX
373 Nova Southeastern Win 11-2 894.19 Mar 15th Tally Classic XIX
371 Morehouse Win 13-7 856.53 Apr 12th Southeast D III Mens Conferences 2025
186 Union (Tennessee) Loss 3-15 512.59 Apr 12th Southeast D III Mens Conferences 2025
364 Georgia College Win 15-8 941.8 Apr 12th Southeast D III Mens Conferences 2025
103 Berry Loss 7-15 844.9 Apr 13th Southeast D III Mens Conferences 2025
228 Embry-Riddle Loss 4-15 345.96 Apr 13th Southeast D III Mens Conferences 2025
**Blowout Eligible

FAQ

The uncertainty of the mean is equal to the standard deviation of the set of game ratings, divided by the square root of the number of games. We treated a team’s ranking as a normally distributed random variable, with the USAU ranking as the mean and the uncertainty of the ranking as the standard deviation
  1. Calculate uncertainy for USAU ranking averge
  2. Model ranking as a normal distribution around USAU averge with standard deviation equal to uncertainty
  3. Simulate seasons by drawing a rank for each team from their distribution. Note the teams in the top 16 (club) or top 20 (college)
  4. Sum the fractions for each region for how often each of it's teams appeared in the top 16 (club) or top 20 (college)
  5. Subtract one from each fraction for "autobids"
  6. Award remainings bids to the regions with the highest remaining fraction, subtracting one from the fraction each time a bid is awarded
There is an article on Ulitworld written by Scott Dunham and I that gives a little more context (though it probably was the thing that linked you here)